AAC Accepted Manuscript Posted Online 23 March 2020 Antimicrob. Agents Chemother. doi:10.1128/AAC.00483-20 Copyright © 2020 American Society for Microbiology. All Rights Reserved.

- 1 Updated approaches against SARS-CoV-2
- Haiou Li^{1,2}, Yunjiao Zhou^{1,2}, Meng Zhang^{1,2}, Haizhou Wang^{1,2}, Qiu Zhao^{1,2}, Jing
 Liu^{1,2#}
- 4 1. Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan
- 5 430071, China
- 6 2. Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan
- 7 430071, China
- 8 [#]Correspondence to:
- 9 Jing Liu, M.D., Ph.D.
- 10 Department of Gastroenterology, Zhongnan Hospital of Wuhan University, No. 169,
- 11 Donghu Road, Wuchang District, Wuhan 430071, Hubei Province, China.
- 12 Email: liujing GI@whu.edu.cn
- 13 **ORCID**: Jing Liu <u>https://orcid.org/0000-0003-3467-9392</u>
- 14
- 15

1

17	The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
18	lies behind the ongoing outbreak of coronavirus disease 2019 (COVID-19). There is a
19	growing understanding of SARS-CoV-2 in the virology, epidemiology and clinical
20	management strategies. However, no anti-SARS-CoV-2 drug or vaccine has been
21	officially approved due to the absence of adequate evidence. Scientists are racing
22	towards the development of treatment for COVID-19. Recent studies have revealed
23	many attractive threptic options, even if some of them remain to be further confirmed
24	in rigorous preclinical models and clinical trials. In this minireview, we aim to
25	summarize the updated potential approaches against SARS-CoV-2. We emphasize
26	that further efforts are warranted to develop the safest and most effective approach.
27	
28	Keywords: SARS-CoV-2; COVID-19; treatment; anti-viral drugs; vaccines

Antimicrobial Agents and Chemotherapy

Accepted Manuscript Posted Online

30 **1. Introduction**

31	Since December 2019, coronavirus disease 2019 (COVID-19) has been spreading
32	around the world with over 130,000 confirmed cases (as time of March 13, 2020) (1,
33	2). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel
34	betacoronavirus, is the causative agent of this global health threat (3). Like other
35	coronavirus, SARS-CoV-2 is characterized by a spherical morphology with spike
36	projections on the surface. It was demonstrated that SARS-CoV-2 shared high
37	sequence identity with that of SARS-CoV and bat SARS-like coronavirus (SL-CoV)
38	(4). Notably, SARS-CoV-2 has lower pathogenicity but higher transmissibility from
39	human to human compared with SARS-CoV (5). Cell entry is the first step of
40	cross-species transmission. SARS-CoV-2 is more likely to infect lung type II alveolar
41	cells, which may explain the severe alveolar damage after infection (6).
42	The rapid spread of COVID-19 raises an urgently requirement for effective
43	therapeutic strategies against SARS-CoV-2. Initially, without licensed vaccines or
44	approved anti-viral drugs, COVID-19 treatment was mainly based on the experience
45	of clinicians. The newest guideline published by National Health Commission (NHC)
	3

AAC

46	recommends IFN-a, lopinavir/ritonavir, ribavirin, chloroquine phosphate and arbidol
47	as anti-viral therapy (7). To date, many potential approaches have been revealed
48	based on the research progress of SARS-CoV-2, including the inhibition of
49	SARS-CoV-2 fusion/entry, disruption of SARS-CoV-2 replication, suppression of
50	excessive inflammatory response, convalescent plasma treatment, vaccines as well as
51	the combination of Traditional Chinese and Western medicine (as summarized in
52	figure 1). Additionally, a number of clinical trials are in progress to test the safety and
53	effectiveness of candidate drugs. In this review, we summarize the current knowledge
54	on the potential treatment against SARS-CoV-2 based on the emerging basic and
55	clinical data.
56	
57	2. Updated attractive approaches against SARS-CoV-2
58	2.1 Inhibition of SARS-CoV-2 fusion/entry
59	Similar to SARS-CoV, SARS-CoV-2 uses spike (S) protein to gain entry into host
60	cells (8). It was shown that the spike (S) protein on the surface of SARS-CoV-2 cell

61 bound the entry receptor angiotensin-converting enzyme 2 (ACE2) on infected cells

4

62	(9). SARS-CoV-2 was predicted to recognize human ACE2 more efficiently than
63	SARS-CoV (10). Thus, targeting the interactions between ACE2 and S protein may
64	be a potential approach. Specifically, receptor binding domain (RBD) within the S
65	protein is the critical target for neutralizing antibodies. Since SARS-CoV-2 S protein
66	displayed high homology toward that of SARS-CoV, the available neutralizing
67	antibody of SARS-CoV CR3022 was found to bind potently with SARS-CoV-2 RBD
68	(4). Nevertheless, Zheng et al. recently reported that more than 85% of the RBD
69	antibody epitopes in SARS-CoV-2 implied remarkable alterations when compared
70	with SARS-CoV, indicating the necessity to develop new monoclone antibodies for
71	SARS-CoV-2 (11). In addition, the rationale for ACE2 receptor as a specific target
72	has been reviewed elsewhere (12, 13). Notably, an open label, randomized, controlled,
73	pilot clinical trial is in progress, further investigating the effect of recombinant human
74	ACE2 (rhACE2; GSK2586881) in patients with severe COVID-19 (NCT04287686).
75	It was suggested that S protein-derived cell entry depended on not only ACE2 but
76	also the host cellular serine protease TMPRSS2 (14). Camostat mesylate, a clinically
77	proven inhibitor of TMPRSS2, significantly reduced lung cell line infection with

78	SARS-CoV-2 and could be considered for COVID-19 treatment (14). In addition, the
79	heptad repeat 1 (HR1) and heptad repeat 2 (HR2) on SARS-CoV-2 involved viral and
80	cell membrane fusion (15). Xia et al. reported that HR2-derived peptides (HR2P) and
81	EK1 (a modified OC43-HR2P peptide) exhibited effective fusion inhibitory activity
82	towards SARS-CoV-2, which would act as fusion/entry inhibitors to treat
83	SARS-CoV-2 infection. Further studies are warranted to substantiate these concepts.
84	Moreover, it was suggested that coronavirus entry also involved pH- and
85	receptor-dependent endocytosis (16, 17). Targeting endocytosis may be another
86	option for fighting SARS-CoV-2. AP-2-associated protein kinase 1 (AAK1) is a host
87	kinase that regulates clathrin-mediated endocytosis (18). A group of approved drugs
88	targeting AAK1 were searched out based on artificial intelligence (AI) technology
89	(19). Among them, the janus kinase inhibitor baricitinib, an AAK1-binding drug, was
90	supposed as a suitable candidate drug for COVID-19 because the standard treatment
91	doses of baricitinib was sufficient to inhibit AAK1 (19).
92	Arbidol and chloroquine phosphate have been added into the NHC guideline of
93	COVID-19 treatment (7). Arbidol was shown to inhibit multiple enveloped viruses by

94	inhibiting virus entry/fusion of viral membranes with cellular membranes (20).
95	Chloroquine, a traditional antimalarial drug, was shown to be effective against
96	SRAS-CoV-2 infection in vitro (21). Several clinical trials are in progress to test the
97	efficacy and safety of chloroquine phosphate against COVID-19 (22). More than 100
98	patients provided the first evidence that chloroquine phosphate was more effective in
99	inhibiting the exacerbation of pneumonia compared with control treatment (22).
100	Additionally, Yao et al. found that hydroxychloroquine (EC50=0.72 $\mu M)$ was more
101	potent to inhibit SARS-CoV-2 than chloroquine (EC50=5.47 μ M) in vitro (23). Most
102	importantly, the molecular mechanism of chloroquine phosphate in the treatment of
103	COVID-19 remains elusive. It was reported that chloroquine could impair the
104	endosome-mediated viral entry or the late stages of viral replication (24). More efforts
105	are needed to pin down the exact mechanism.
106	

107 2.2 Disruption of SARS-CoV-2 replication

108 A lot of anti-viral agents have been developed against viral proteases, polymerases,

109 MTases, and entry proteins. A number of clinical trials of antiviral drugs are currently

110	in progress, such as remdesivir (NCT04252664, NCT04257656), favipiravir
111	(ChiCTR2000029600, ChiCTR2000029544), ASC09 (ChiCTR2000029603),
112	lopinavir/ritonavir (ChiCTR2000029387, ChiCTR2000029468, ChiCTR2000029539),
113	arbidol (ChiCTR2000029621). Martinez reported that the most promising antiviral for
114	fighting SARS-CoV-2 was remdesivir (25). Remdesivir is a monophosphoramidate
115	prodrug of an adenosine analog. Its active form can incorporate into nascent viral
116	RNA by RNA-dependent RNA polymerases (RdRps), which then causes RNA
117	synthesis arrest (26). Wang et al. demonstrated that remdesivir effectively inhibited
118	SARS-CoV-2 in vitro (21). The clinical condition of the first case of COVID-19
119	confirmed in the United States improved following intravenous remdesivir
120	administration (27). Similarly, favipiravir and ribavirin are monophosphoramidate
121	prodrugs of guanine analogues and have been approved for some other viruses
122	treatment (28). However, their antiviral effect in patients with COVID-19 needs
123	rigorous data to support. Lopinavir and ritonavir are protease inhibitors targeting the
124	coronavirus main proteinase (3C-like protease; 3CLpro). 3CLpro is responsible for
125	processing the polypeptide translation product from the genomic RNA into the protein

8

126	components (29). High-throughput screening was also used to screen small molecular
127	drugs targeting the viral main protease in clinical drug libraries (30). Four molecules
128	were showed reasonable binding conformations with the viral main protease,
129	including prulifloxacin, tegobuvir, bictegravir and nelfinavir (30).
130	Targeting the RNA genome of SARS-CoV-2 may be another way. Nguyen et al.
131	showed the application of the novel CRISPR/Cas13 RNA knockdown system in
132	cleaving the SARS-CoV-2 RNA genome (31). This CRISPR/Cas13d system was
133	composed of a Cas13d protein and guide RNAs-containing spacer sequences
134	specifically complementary to the virus RNA genome. It was supposed that the
135	Cas13d effector could be delivered by adeno-associated virus (AAV) to the lung
136	infected with SARS-CoV-2 (31).
137	
138	2.3 Suppression of excessive inflammatory response
139	A coordinated cytokine response is essential for the host immune response. However,

a dysregulated response leads to a hyperinflammatory condition in some patients

infected with SARS-CoV-2. It was reported that the patients in intensive care unit 141

9

142	(ICU) had higher concentration of cytokines in plasma compared with non-ICU
143	patients with COVID-19, suggesting that the cytokine storm was associated with
144	disease severity (32). Besides, higher percentage of $GM-CSF^+$ and $IL-6^+CD4^+$ T cells
145	was found from ICU patients infected with SARS-CoV-2 compared with non-ICU
146	patients (33). In view of this, inhibition of excessive inflammatory response may be
147	an adjunct for treating COVID-19. Nevertheless, the therapeutic use of corticosteroids
148	that has excellent pharmacological effects to suppress exuberant and dysfunctional
149	systematic inflammation is still controversy (25, 32). The current NHC guideline
150	emphasizes that the routine use of systematic corticosteroids is not recommended
151	unless indicated for another reason. In line, there was no available data showing that
152	the patients benefited from corticosteroid treatment in SRAS-CoV or MERS infection,
153	which might be attributed to the suppression of immune response against virus (34).
154	Notably, a recent retrospective study showed the potential benefits from low-dose
155	corticosteroids treatment in a subset of critically ill patients with SRAS-CoV-2 (35).
156	More studies are needed to find out how and when to use corticosteroids properly.

157	At the cellular level, Zhou et al. demonstrated that the CD4 ⁺ T cells were rapidly
158	activated to produce GM-CSF and other inflammatory cytokines after SARS-CoV-2
159	infection, which further induced $CD14^+CD16^+$ monocytes activation with high
160	expression of interleukin 6 (IL-6) (33). Thus, blocking GM-CSF or IL-6 receptor
161	would potentially reduce immunopathology caused by SARS-CoV-2. In line, a
162	multicenter, randomized, controlled clinical trial is under way to examine the efficacy
163	and safety of tocilizumab (an IL-6 receptor-specific antibody) in patients with
164	COVID-19 (ChiCTR2000029765). Moreover, Fu et al. mentioned the possible
165	mechanisms of SARS-CoV-2-mediated inflammatory responses, in which the
166	neutralizing antibodies triggered Fc receptors (FcR)-mediated inflammatory responses
167	and acute lung injury (36). Various options to block FcR activation might reduce
168	SARS-CoV-2-induced inflammatory responses (36).

170 **2.4 Convalescent plasma treatment**

171	With infections wherein there is no specific therapy available, the therapy with
172	convalescent plasma (CP) has been proposed as principal treatment (37). The CP is
173	obtained from a donor who has recovered from infection by developing humoral
174	immunity against the SARS-CoV-2 (38). The protective and therapeutic benefit of CP
175	was attributed to the possible source of specific antibodies of human origin (39).
176	However, the efficacy of CP treatment is still difficult to be evaluated because of the
177	lack of high-quality randomized clinical trials and precise action mechanism of
178	plasma therapy. According to the NHC guideline, the CP of recovered patients is
179	mainly used for patients in rapid disease progression, severe or critical condition (40).
180	Several clinical trials investigating the efficacy and safety of convalescent plasma
181	transfusion in patients with COVID-19 are in progress (ChiCTR2000030010,
182	ChiCTR2000030179, ChiCTR2000030381).
183	

184 **2.5 Vaccines**

185	With the global spread of SARS-CoV-2, vaccination must be the most efficient and
186	cost-effective mean to prevent and control COVID-19 (41). The robust researches are
187	currently under way to facilitate the development of vaccines against SARS-CoV-2.
188	Specifically, the S protein of SARS-CoV-2 remains a key target for vaccine
189	development. Recently, Daniel et al. reported and shared the cryo-EM structure of
190	SARS-CoV-2 S trimer, which allowed for additional protein engineering efforts and
191	speeded up the process of vaccine development (42). Besides, Lucchese et al.
192	searched the pentapeptides unique to SARS-CoV-2 by comparing the viral and the
193	human proteomes and found that 107 human-foreign pentapeptides were embedded in
194	S protein (43). Further, these S protein pentapeptides yielded 66 candidate epitopes
195	for vaccine development (43). Moreover, since there were few available
196	immunological studies related to SARS-CoV-2, Ahmed et al. screened the SARS-
197	CoV-derived epitopes due to its high genetic similarity with SARS-CoV-2 (44). A
198	screened set of SARS-CoV-derived B cell and T cell epitopes that mapped identically
199	to SARS-CoV-2 proteins were identified, which would help the initial phase of
200	vaccine development (44).

AAC

201	More than 15 potential vaccine candidates of COVID-19 are being developed
202	around the world, including inactivated vaccine, recombinant subunits vaccine,
203	nucleic acid-based vaccine, adenoviral vector vaccine, recombinant influenza viral
204	vector vaccine, etc (45). On 23 January 2020, the Coalition for Epidemic
205	Preparedness Innovations (CEPI) announced the finding to DNA, mRNA, and
206	"molecular clamp" vaccine platforms (46). There was no existing literature search on
207	SARS-CoV-2 vaccine trials as time of March 13, 2020. The safety of vaccine remains
208	a top priority for vaccine development.
209	
210	2.6 Combination of Traditional Chinese and Western medicine
211	It was reported that the Chinese medicine products that were used to treat respiratory
212	tract infectious diseases might be helpful for SARS-CoV-2 treatment (47, 48). Among

 $213 \qquad \text{these products, Lianhuaqing wen capsules and ShuFeng JieDu capsules were shown to} \\$

214 exert independent anti-viral effect and synergistic antiviral effect with western

215 medicine products on influenza viruses, respectively (49, 50). The latest treatment

216	guideline in China added Traditional Chinese Medicine (TCM) as one of the treatment
217	options for COVID-19. Wang et al. reported four cases with COVID-19 which gained
218	improvement after taking combined Chinese and western medicine treatment (51).
219	However, there are rarely published studies on Chinese medicine products in the
220	treatment of COVID-19, especially the dearth of high-quality research. More
221	prospective, rigorous population studies are urgently required to confirm the
222	therapeutic effect of TCM. The mechanism of their antiviral action needs to be further
223	illuminated.

225 **3** Conclusions

The potential therapeutic strategies mentioned above are based on the updated research data for SARS-CoV-2. Among these options, we suppose the therapeutic drugs that directly target SARS-CoV-2 will be most effective. Besides, vaccines are critical for the prevention and limitation of COVID-19 transmission. Notably, the encouraging advances in deciphering SRAS-Cov-2 will lead to additional potential

Antimicrobial Agents and Chemotherapy

231 therapeutic targets. Further, strong pre-clinical and clinical studies are needed to

232 determine the safe and effective treatment for COVID-19.

233 Conflict of interest

234 All authors have no conflict of interest.

235 Funding

- 236 The work was supported by National Natural Science Foundation of China (J.L., No.
- 237 81472735); National Basic Research Program of China (973 program, J.L., Grant
- 238 **#2015CB932600**).

239

AAC

240 **References**

241	1.	Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL,
242		Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen
243		PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH,
244		Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ,
245		Zhu SY, Zhong NS, China Medical Treatment Expert Group for C. 2020.
246		Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med
247		doi:10.1056/NEJMoa2002032.
248	2.	World Health Organization.
249		https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200
250		<u>313-sitrep-53-covid-19.pdf?sfvrsn=adb3f72_2</u> (accessed March 13, 2020).
251	3.	Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W,
252		Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China
253		Novel Coronavirus I, Research T. 2020. A Novel Coronavirus from Patients
254		with Pneumonia in China, 2019. N Engl J Med 382:727-733.
255	4.	Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y,
256		Ying T. 2020. Potent binding of 2019 novel coronavirus spike protein by a
257		SARS coronavirus-specific human monoclonal antibody. Emerg Microbes
258		Infect 9:382-385.
259	5.	Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau
260		EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J,
261		Li M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y,
262		Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G,
263		Lam TTY, Wu JTK, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. 2020.
264		Early Transmission Dynamics in Wuhan, China, of Novel
265		Coronavirus-Infected Pneumonia. N Engl J Med
266		doi:10.1056/NEJMoa2001316.
267	6.	Zhao Y ZZ, Wang Y, Zhou Y, Ma Y, Zuo W. 2020. Single-cell RNA
268		expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov.
269		BioRxiv doi:https://doi.org/10.1101/2020.01.26.919985.
270	7.	National Health Commission of the People's Republic of China. Notice on
271		printing and distributing the diagnosis and treatment plan of pneumonia with

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020.
 Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
 Cell doi:10.1016/j.cell.2020.02.058.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B,
 Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y,
 Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B,
 Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak
 associated with a new coronavirus of probable bat origin. Nature
 doi:10.1038/s41586-020-2012-7.

- Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor recognition by
 novel coronavirus from Wuhan: An analysis based on decade-long structural
 studies of SARS. J Virol doi:10.1128/JVI.00127-20.
- 287 11. Zheng M, Song L. 2020. Novel antibody epitopes dominate the antigenicity of
 288 spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol
 289 Immunol doi:10.1038/s41423-020-0385-z.
- 290 12. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. 2020.
 291 Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor:
 292 molecular mechanisms and potential therapeutic target. Intensive Care Med
 293 doi:10.1007/s00134-020-05985-9.
- Kruse RL. 2020. Therapeutic strategies in an outbreak scenario to treat the
 novel coronavirus originating in Wuhan, China. F1000Res 9:72.
- 14. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S,
 Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C,
 Pohlmann S. 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and
 TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell
 doi:10.1016/j.cell.2020.02.052.
- 301 15. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, Lu 302 L. 2020. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting 303 HR1 domain in spike protein. Cell Mol Immunol 304 doi:10.1038/s41423-020-0374-2.

305	16.	Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T,
306		Sugamura K. 2007. Clathrin-dependent entry of severe acute respiratory
307		syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic
308		tail deleted. J Virol 81:8722-9.
309	17.	Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. 2008. SARS
310		coronavirus entry into host cells through a novel clathrin- and
311		caveolae-independent endocytic pathway. Cell Res 18:290-301.
312	18.	Neveu G, Ziv-Av A, Barouch-Bentov R, Berkerman E, Mulholland J, Einav S.
313		2015. AP-2-associated protein kinase 1 and cyclin G-associated kinase
314		regulate hepatitis C virus entry and are potential drug targets. J Virol
315		89:4387-404.
316	19.	Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Stebbing J.
317		2020. Baricitinib as potential treatment for 2019-nCoV acute respiratory
318		disease. Lancet 395:e30-e31.
319	20.	Blaising J, Polyak SJ, Pecheur EI. 2014. Arbidol as a broad-spectrum antiviral:
320		an update. Antiviral Res 107:84-94.
321	21.	Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao
322		G. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged
323		novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269-271.
324	22.	Gao J, Tian Z, Yang X. 2020. Breakthrough: Chloroquine phosphate has
325		shown apparent efficacy in treatment of COVID-19 associated pneumonia in
326		clinical studies. Biosci Trends doi:10.5582/bst.2020.01047.
327	23.	Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song
328		C, Zhan S, Lu R, Li H, Tan W, Liu D. 2020. In Vitro Antiviral Activity and
329		Projection of Optimized Dosing Design of Hydroxychloroquine for the
330		Treatment of Severe Acute Respiratory Syndrome Coronavirus 2
331		(SARS-CoV-2). Clin Infect Dis doi:10.1093/cid/ciaa237.
332	24.	Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. 2003. Effects of
333		chloroquine on viral infections: an old drug against today's diseases? Lancet
334		Infect Dis 3:722-7.
335	25.	Martinez MA. 2020. Compounds with therapeutic potential against novel
336		respiratory 2019 coronavirus. Antimicrob Agents Chemother
337		doi:10.1128/AAC.00399-20.

338	26.	Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. 2020. The antiviral
339		compound remdesivir potently inhibits RNA-dependent RNA polymerase
340		from Middle East respiratory syndrome coronavirus. J Biol Chem
341		doi:10.1074/jbc.AC120.013056.
342	27.	Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters
343		C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber
344		SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs
345		HM, Uyeki TM, Pillai SK, Washington State -nCo VCIT. 2020. First Case of
346		2019 Novel Coronavirus in the United States. N Engl J Med 382:929-936.
347	28.	Li G, De Clercq E. 2020. Therapeutic options for the 2019 novel coronavirus
348		(2019-nCoV). Nat Rev Drug Discov 19:149-150.
349	29.	Morse JS, Lalonde T, Xu S, Liu WR. 2020. Learning from the Past: Possible
350		Urgent Prevention and Treatment Options for Severe Acute Respiratory
351		Infections Caused by 2019-nCoV. Chembiochem 21:730-738.
352	30.	Li Y ZJ, Wang N, Li H, Shi Y, Guo G, Liu K, Zeng H, Zou Q. 2020.
353		Therapeutic Drugs Targeting 2019-nCoV Main Protease by High-Throughput
354		Screening. BioRxiv doi:10.1101/2020.01.28.922922.
355	31.	Nguyen TM, Zhang Y, Pandolfi PP. 2020. Virus against virus: a potential
356		treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res
357		30:189-190.
358	32.	Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X,
359		Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y,
360		Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020.
361		Clinical features of patients infected with 2019 novel coronavirus in Wuhan,
362		China. Lancet 395:497-506.
363	33.	Zhou Y FB, Zheng X, Wang D, Zhao, C, Qi Y, Sun R, Tian Z, Xu X, Wei H.
364		2020. Aberrant pathogenic GM-CSF+ T cells and inflammatory
365		CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new
366		coronavirus. BioRxiv doi:https://doi.org/10.1101/2020.02.12.945576.
367	34.	Russell CD, Millar JE, Baillie JK. 2020. Clinical evidence does not support
368		corticosteroid treatment for 2019-nCoV lung injury. Lancet 395:473-475.

AAC

35. Zhou W, Liu Y, Tian D, Wang C, Wang S, Cheng J, Hu M, Fang M, Gao	Y.
2020. Potential benefits of precise corticosteroids therapy for seve	re
2019-nCoV pneumonia. Signal Transduct Target Ther 5:18.	
36. Fu Y, Cheng Y, Wu Y. 2020. Understanding SARS-CoV-2-Mediat	ed
Inflammatory Responses: From Mechanisms to Potential Therapeutic Too	ls.
Virol Sin doi:10.1007/s12250-020-00207-4.	
37. Chen L, Xiong J, Bao L, Shi Y. 2020. Convalescent plasma as a potent	al
therapy for COVID-19. Lancet Infect D	vis
doi:10.1016/S1473-3099(20)30141-9.	
38. Garraud O, Heshmati F, Pozzetto B, Lefrere F, Girot R, Saillol A, Laperche	S.
2016. Plasma therapy against infectious pathogens, as of yesterday, today a	nd
tomorrow. Transfus Clin Biol 23:39-44.	
39. Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Liumbruno Gl	И,
Grazzini G. 2016. Convalescent plasma: new evidence for an old therapeur	ic
tool? Blood Transfus 14:152-7.	
40. National Health Commission of the People's Republic of China. Notice	on
printing and distributing the convalescent plasma treatment for nov	el
coronavirus pneumonia (trial version 2	2).
http://www.nhc.gov.cn/yzygj/s7658/202003/61d608a7e8bf49fca418a6074c2	bf
5a2.shtml (accessed March 4, 2020).	
41. Lu S. 2020. Timely development of vaccines against SARS-CoV-2. Eme	rg
Microbes Infect 9:542-544.	
42. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graha	m
BS, McLellan JS. 2020. Cryo-EM structure of the 2019-nCoV spike in t	he
prefusion conformation. Science doi:10.1126/science.abb2507.	
43. Lucchese G. 2020. Epitopes for a 2019-nCoV vaccine. Cell Mol Immun	ol
doi:10.1038/s41423-020-0377-z.	
44. Ahmed SF, Quadeer AA, McKay MR. 2020. Preliminary Identification	of
Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-	2)
Based on SARS-CoV Immunological Studies. Viruses 12.	
45. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI, Gutierrez R	A,
Gwee SXW, Chua PEY, Yang Q, Ng XY, Yap RK, Tan HY, Teo YY, Tan C	Ċ,
Cook AR, Yap JC, Hsu LY. 2020. Potential Rapid Diagnostics, Vaccine a	ıd

402		Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review.
403		J Clin Med 9.
404	46.	CEPI. CEPI to fund three programmes to develop vaccines against the novel
405		coronavirus, ncov-2019. Available online:
406		https://cepi.net/news_cepi/cepi-to-fund-three-programmes-to-develop-vaccine
407		s-against-the-novel-coronavirus-ncov-2019/ (accessed on 29 January 2020).
408	47.	Lu H. 2020. Drug treatment options for the 2019-new coronavirus
409		(2019-nCoV). Biosci Trends doi:10.5582/bst.2020.01020.
410	48.	Ren JL, Zhang AH, Wang XJ. 2020. Traditional Chinese medicine for
411		COVID-19 treatment. Pharmacol Res 155:104743.
412	49.	Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, Cheng PL, Yutao W, Zheng
413		J, Yang Z, Zhang F. 2017. The Chinese prescription lianhuaqingwen capsule
414		exerts anti-influenza activity through the inhibition of viral propagation and
415		impacts immune function. BMC Complement Altern Med 17:130.
416	50.	Ji S, Bai Q, Wu X, Zhang DW, Wang S, Shen JL, Fei GH. 2020. Unique
417		synergistic antiviral effects of Shufeng Jiedu Capsule and oseltamivir in
418		influenza A viral-induced acute exacerbation of chronic obstructive
419		pulmonary disease. Biomed Pharmacother 121:109652.
420	51.	Wang Z, Chen X, Lu Y, Chen F, Zhang W. 2020. Clinical characteristics and
421		therapeutic procedure for four cases with 2019 novel coronavirus pneumonia
422		receiving combined Chinese and Western medicine treatment. Biosci Trends
423		doi:10.5582/bst.2020.01030.

425

AAC

427	Figure1: The updated potential approach against SARS-CoV-2. (A) Dampening of
428	SARS-CoV-2 fusion/entry; Disruption of SARS-CoV-2 replication; Inhibition of
429	excessive inflammatory response. (B) Convalescent plasma treatment. (C) Vaccines.
430	(D) Combination of Chinese traditional and Western medicine. ACE2;
431	angiotensin-converting enzyme 2; rhACE2, recombinant human ACE2; HR2P, heptad
432	repeat 2-derived peptides; EK1, a modified OC43-HR2P peptide; 3CLpro; 3C-like
433	protease; RdRps, RNA-dependent RNA polymerases; AAV, adeno-associated virus;
434	IL-6, interleukin-6; TCM, Traditional Chinese Medicine.

AAC

Downloaded from http://aac.asm.org/ on March 25, 2020 by guest

inactivated virus